
Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 1http://perldoc.perl.org

NAME
ExtUtils::MakeMaker - Create a module Makefile

SYNOPSIS
 use ExtUtils::MakeMaker;

 WriteMakefile(ATTRIBUTE => VALUE [, ...]);

DESCRIPTION
This utility is designed to write a Makefile for an extension module
 from a Makefile.PL. It is based on
the Makefile.SH model provided by
 Andy Dougherty and the perl5-porters.

It splits the task of generating the Makefile into several subroutines
 that can be individually
overridden. Each subroutine returns the text
 it wishes to have written to the Makefile.

MakeMaker is object oriented. Each directory below the current
 directory that contains a Makefile.PL
is treated as a separate
 object. This makes it possible to write an unlimited number of
 Makefiles with
a single invocation of WriteMakefile().

How To Write A Makefile.PL
See ExtUtils::MakeMaker::Tutorial.

The long answer is the rest of the manpage :-)

Default Makefile Behaviour
The generated Makefile enables the user of the extension to invoke

 perl Makefile.PL # optionally "perl Makefile.PL verbose"
 make
 make test # optionally set TEST_VERBOSE=1
 make install # See below

The Makefile to be produced may be altered by adding arguments of the
 form KEY=VALUE. E.g.

 perl Makefile.PL PREFIX=~

Other interesting targets in the generated Makefile are

 make config # to check if the Makefile is up-to-date
 make clean # delete local temp files (Makefile gets renamed)
 make realclean # delete derived files (including ./blib)
 make ci # check in all the files in the MANIFEST file
 make dist # see below the Distribution Support section

make test
MakeMaker checks for the existence of a file named test.pl in the
 current directory and if it exists it
execute the script with the
 proper set of perl -I options.

MakeMaker also checks for any files matching glob("t/*.t"). It will
 execute all matching files in
alphabetical order via the Test::Harness module with the -I switches set correctly.

If you'd like to see the raw output of your tests, set the TEST_VERBOSE variable to true.

 make test TEST_VERBOSE=1

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 2http://perldoc.perl.org

make testdb
A useful variation of the above is the target testdb. It runs the
 test under the Perl debugger (see
perldebug). If the file test.pl exists in the current directory, it is used for the test.

If you want to debug some other testfile, set the TEST_FILE variable
 thusly:

 make testdb TEST_FILE=t/mytest.t

By default the debugger is called using -d option to perl. If you
 want to specify some other option, set
the TESTDB_SW variable:

 make testdb TESTDB_SW=-Dx

make install
make alone puts all relevant files into directories that are named by
 the macros INST_LIB,
INST_ARCHLIB, INST_SCRIPT, INST_MAN1DIR and
 INST_MAN3DIR. All these default to
something below ./blib if you are not building below the perl source directory. If you are
 building below
the perl source, INST_LIB and INST_ARCHLIB default to
 ../../lib, and INST_SCRIPT is not defined.

The install target of the generated Makefile copies the files found
 below each of the INST_*
directories to their INSTALL*
 counterparts. Which counterparts are chosen depends on the setting of

INSTALLDIRS according to the following table:

 INSTALLDIRS set to
 perl site vendor

 PERLPREFIX SITEPREFIX VENDORPREFIX
 INST_ARCHLIB INSTALLARCHLIB INSTALLSITEARCH INSTALLVENDORARCH
 INST_LIB INSTALLPRIVLIB INSTALLSITELIB INSTALLVENDORLIB
 INST_BIN INSTALLBIN INSTALLSITEBIN INSTALLVENDORBIN
 INST_SCRIPT INSTALLSCRIPT INSTALLSCRIPT INSTALLSCRIPT
 INST_MAN1DIR INSTALLMAN1DIR INSTALLSITEMAN1DIR INSTALLVENDORMAN1DIR
 INST_MAN3DIR INSTALLMAN3DIR INSTALLSITEMAN3DIR INSTALLVENDORMAN3DIR

The INSTALL... macros in turn default to their %Config
 ($Config{installprivlib}, $Config{installarchlib},
etc.) counterparts.

You can check the values of these variables on your system with

 perl '-V:install.*'

And to check the sequence in which the library directories are
 searched by perl, run

 perl -le 'print join $/, @INC'

Sometimes older versions of the module you're installing live in other
 directories in @INC. Because
Perl loads the first version of a module it finds, not the newest, you might accidentally get one of these
older
 versions even after installing a brand new version. To delete all other
 versions of the module
you're installing (not simply older ones) set the UNINST variable.

 make install UNINST=1

PREFIX and LIB attribute
PREFIX and LIB can be used to set several INSTALL* attributes in one
 go. The quickest way to install
a module in a non-standard place might
 be

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 3http://perldoc.perl.org

 perl Makefile.PL PREFIX=~

This will install all files in the module under your home directory,
 with man pages and libraries going
into an appropriate place (usually
 ~/man and ~/lib).

Another way to specify many INSTALL directories with a single
 parameter is LIB.

 perl Makefile.PL LIB=~/lib

This will install the module's architecture-independent files into
 ~/lib, the architecture-dependent files
into ~/lib/$archname.

Note, that in both cases the tilde expansion is done by MakeMaker, not
 by perl by default, nor by
make.

Conflicts between parameters LIB, PREFIX and the various INSTALL*
 arguments are resolved so
that:

setting LIB overrides any setting of INSTALLPRIVLIB, INSTALLARCHLIB,
 INSTALLSITELIB,
INSTALLSITEARCH (and they are not affected by PREFIX);

without LIB, setting PREFIX replaces the initial $Config{prefix}
 part of those INSTALL*
arguments, even if the latter are explicitly
 set (but are set to still start with $Config{prefix}
).

If the user has superuser privileges, and is not working on AFS or
 relatives, then the defaults for
INSTALLPRIVLIB, INSTALLARCHLIB,
 INSTALLSCRIPT, etc. will be appropriate, and this incantation
will be
 the best:

 perl Makefile.PL;
 make;
 make test
 make install

make install per default writes some documentation of what has been
 done into the file
$(INSTALLARCHLIB)/perllocal.pod. This feature
 can be bypassed by calling make
pure_install.

AFS users
will have to specify the installation directories as these most
 probably have changed since perl itself
has been installed. They will
 have to do this by calling

 perl Makefile.PL INSTALLSITELIB=/afs/here/today \
 INSTALLSCRIPT=/afs/there/now INSTALLMAN3DIR=/afs/for/manpages
 make

Be careful to repeat this procedure every time you recompile an
 extension, unless you are sure the
AFS installation directories are
 still valid.

Static Linking of a new Perl Binary
An extension that is built with the above steps is ready to use on
 systems supporting dynamic loading.
On systems that do not support
 dynamic loading, any newly created extension has to be linked
together
 with the available resources. MakeMaker supports the linking process
 by creating
appropriate targets in the Makefile whenever an extension
 is built. You can invoke the corresponding
section of the makefile with

 make perl

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 4http://perldoc.perl.org

That produces a new perl binary in the current directory with all
 extensions linked in that can be found
in INST_ARCHLIB, SITELIBEXP,
 and PERL_ARCHLIB. To do that, MakeMaker writes a new
Makefile, on
 UNIX, this is called Makefile.aperl (may be system dependent). If you
 want to force the
creation of a new perl, it is recommended, that you
 delete this Makefile.aperl, so the directories are
searched-through
 for linkable libraries again.

The binary can be installed into the directory where perl normally
 resides on your machine with

 make inst_perl

To produce a perl binary with a different name than perl, either say

 perl Makefile.PL MAP_TARGET=myperl
 make myperl
 make inst_perl

or say

 perl Makefile.PL
 make myperl MAP_TARGET=myperl
 make inst_perl MAP_TARGET=myperl

In any case you will be prompted with the correct invocation of the inst_perl target that installs the
new binary into INSTALLBIN.

make inst_perl per default writes some documentation of what has been
 done into the file
$(INSTALLARCHLIB)/perllocal.pod. This
 can be bypassed by calling make pure_inst_perl.

Warning: the inst_perl: target will most probably overwrite your
 existing perl binary. Use with care!

Sometimes you might want to build a statically linked perl although
 your system supports dynamic
loading. In this case you may explicitly
 set the linktype with the invocation of the Makefile.PL or make:

 perl Makefile.PL LINKTYPE=static # recommended

or

 make LINKTYPE=static # works on most systems

Determination of Perl Library and Installation Locations
MakeMaker needs to know, or to guess, where certain things are
 located. Especially INST_LIB and
INST_ARCHLIB (where to put the files
 during the make(1) run), PERL_LIB and PERL_ARCHLIB
(where to read
 existing modules from), and PERL_INC (header files and libperl*.*).

Extensions may be built either using the contents of the perl source
 directory tree or from the installed
perl library. The recommended way
 is to build extensions after you have run 'make install' on perl

itself. You can do that in any directory on your hard disk that is not
 below the perl source tree. The
support for extensions below the ext
 directory of the perl distribution is only good for the standard

extensions that come with perl.

If an extension is being built below the ext/ directory of the perl
 source then MakeMaker will set
PERL_SRC automatically (e.g., ../..). If PERL_SRC is defined and the extension is recognized as

a standard extension, then other variables default to the following:

 PERL_INC = PERL_SRC
 PERL_LIB = PERL_SRC/lib
 PERL_ARCHLIB = PERL_SRC/lib
 INST_LIB = PERL_LIB

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 5http://perldoc.perl.org

 INST_ARCHLIB = PERL_ARCHLIB

If an extension is being built away from the perl source then MakeMaker
 will leave PERL_SRC
undefined and default to using the installed copy
 of the perl library. The other variables default to the
following:

 PERL_INC = $archlibexp/CORE
 PERL_LIB = $privlibexp
 PERL_ARCHLIB = $archlibexp
 INST_LIB = ./blib/lib
 INST_ARCHLIB = ./blib/arch

If perl has not yet been installed then PERL_SRC can be defined on the
 command line as shown in
the previous section.

Which architecture dependent directory?
If you don't want to keep the defaults for the INSTALL* macros,
 MakeMaker helps you to minimize the
typing needed: the usual
 relationship between INSTALLPRIVLIB and INSTALLARCHLIB is
determined
 by Configure at perl compilation time. MakeMaker supports the user who
 sets
INSTALLPRIVLIB. If INSTALLPRIVLIB is set, but INSTALLARCHLIB not,
 then MakeMaker defaults
the latter to be the same subdirectory of
 INSTALLPRIVLIB as Configure decided for the counterparts
in %Config ,
 otherwise it defaults to INSTALLPRIVLIB. The same relationship holds
 for
INSTALLSITELIB and INSTALLSITEARCH.

MakeMaker gives you much more freedom than needed to configure
 internal variables and get
different results. It is worth to mention,
 that make(1) also lets you configure most of the variables that
are
 used in the Makefile. But in the majority of situations this will not
 be necessary, and should only
be done if the author of a package
 recommends it (or you know what you're doing).

Using Attributes and Parameters
The following attributes may be specified as arguments to WriteMakefile()
 or as NAME=VALUE pairs
on the command line.

ABSTRACT

One line description of the module. Will be included in PPD file.

ABSTRACT_FROM

Name of the file that contains the package description. MakeMaker looks
 for a line in the POD
matching /^($package\s-\s)(.*)/. This is typically
 the first line in the "=head1 NAME" section. $2
becomes the abstract.

AUTHOR

String containing name (and email address) of package author(s). Is used
 in PPD (Perl Package
Description) files for PPM (Perl Package Manager).

BINARY_LOCATION

Used when creating PPD files for binary packages. It can be set to a
 full or relative path or URL to
the binary archive for a particular
 architecture. For example:

 perl Makefile.PL BINARY_LOCATION=x86/Agent.tar.gz

builds a PPD package that references a binary of the Agent package,
 located in the x86 directory
relative to the PPD itself.

C

Ref to array of *.c file names. Initialised from a directory scan
 and the values portion of the XS
attribute hash. This is not
 currently used by MakeMaker but may be handy in Makefile.PLs.

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 6http://perldoc.perl.org

CCFLAGS

String that will be included in the compiler call command line between
 the arguments INC and
OPTIMIZE.

CONFIG

Arrayref. E.g. [qw(archname manext)] defines ARCHNAME & MANEXT from
 config.sh.
MakeMaker will add to CONFIG the following values anyway:
 ar
 cc
 cccdlflags
 ccdlflags
 dlext
 dlsrc

ld
 lddlflags
 ldflags
 libc
 lib_ext
 obj_ext
 ranlib
 sitelibexp
 sitearchexp
 so

CONFIGURE

CODE reference. The subroutine should return a hash reference. The
 hash may contain further
attributes, e.g. {LIBS => ...}, that have to
 be determined by some evaluation method.

DEFINE

Something like "-DHAVE_UNISTD_H"

DESTDIR

This is the root directory into which the code will be installed. It prepends itself to the normal prefix
. For example, if your code
 would normally go into /usr/local/lib/perl you could set
DESTDIR=~/tmp/
 and installation would go into ~/tmp/usr/local/lib/perl.

This is primarily of use for people who repackage Perl modules.

NOTE: Due to the nature of make, it is important that you put the trailing
 slash on your DESTDIR.
~/tmp/ not ~/tmp.

DIR

Ref to array of subdirectories containing Makefile.PLs e.g. ['sdbm'
] in ext/SDBM_File

DISTNAME

A safe filename for the package.

Defaults to NAME above but with :: replaced with -.

For example, Foo::Bar becomes Foo-Bar.

DISTVNAME

Your name for distributing the package with the version number
 included. This is used by 'make
dist' to name the resulting archive
 file.

Defaults to DISTNAME-VERSION.

For example, version 1.04 of Foo::Bar becomes Foo-Bar-1.04.

On some OS's where . has special meaning VERSION_SYM may be used in
 place of VERSION.

DL_FUNCS

Hashref of symbol names for routines to be made available as universal
 symbols. Each key/value
pair consists of the package name and an
 array of routine names in that package. Used only
under AIX, OS/2,
 VMS and Win32 at present. The routine names supplied will be expanded
 in the
same way as XSUB names are expanded by the XS() macro.
 Defaults to

 {"$(NAME)" => ["boot_$(NAME)"] }

e.g.

 {"RPC" => [qw(boot_rpcb rpcb_gettime getnetconfigent)],
 "NetconfigPtr" => ['DESTROY'] }

Please see the ExtUtils::Mksymlists documentation for more information
 about the DL_FUNCS,
DL_VARS and FUNCLIST attributes.

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 7http://perldoc.perl.org

DL_VARS

Array of symbol names for variables to be made available as universal symbols.
 Used only under
AIX, OS/2, VMS and Win32 at present. Defaults to [].
 (e.g. [qw(Foo_version Foo_numstreams
Foo_tree)])

EXCLUDE_EXT

Array of extension names to exclude when doing a static build. This
 is ignored if INCLUDE_EXT is
present. Consult INCLUDE_EXT for more
 details. (e.g. [qw(Socket POSIX)])

This attribute may be most useful when specified as a string on the
 command line: perl
Makefile.PL EXCLUDE_EXT='Socket Safe'

EXE_FILES

Ref to array of executable files. The files will be copied to the
 INST_SCRIPT directory. Make
realclean will delete them from there
 again.

If your executables start with something like #!perl or
 #!/usr/bin/perl MakeMaker will change this to
the path of the perl
 'Makefile.PL' was invoked with so the programs will be sure to run
 properly
even if perl is not in /usr/bin/perl.

FIRST_MAKEFILE

The name of the Makefile to be produced. This is used for the second
 Makefile that will be
produced for the MAP_TARGET.

Defaults to 'Makefile' or 'Descrip.MMS' on VMS.

(Note: we couldn't use MAKEFILE because dmake uses this for something
 else).

FULLPERL

Perl binary able to run this extension, load XS modules, etc...

FULLPERLRUN

Like PERLRUN, except it uses FULLPERL.

FULLPERLRUNINST

Like PERLRUNINST, except it uses FULLPERL.

FUNCLIST

This provides an alternate means to specify function names to be
 exported from the extension. Its
value is a reference to an
 array of function names to be exported by the extension. These
 names
are passed through unaltered to the linker options file.

H

Ref to array of *.h file names. Similar to C.

IMPORTS

This attribute is used to specify names to be imported into the
 extension. Takes a hash ref.

It is only used on OS/2 and Win32.

INC

Include file dirs eg: "-I/usr/5include -I/path/to/inc"

INCLUDE_EXT

Array of extension names to be included when doing a static build.
 MakeMaker will normally build
with all of the installed extensions when
 doing a static build, and that is usually the desired
behavior. If
 INCLUDE_EXT is present then MakeMaker will build only with those extensions
 which
are explicitly mentioned. (e.g. [qw(Socket POSIX)])

It is not necessary to mention DynaLoader or the current extension when
 filling in INCLUDE_EXT.

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 8http://perldoc.perl.org

If the INCLUDE_EXT is mentioned but is empty then
 only DynaLoader and the current extension
will be included in the build.

This attribute may be most useful when specified as a string on the
 command line: perl
Makefile.PL INCLUDE_EXT='POSIX Socket Devel::Peek'

INSTALLARCHLIB

Used by 'make install', which copies files from INST_ARCHLIB to this
 directory if INSTALLDIRS is
set to perl.

INSTALLBIN

Directory to install binary files (e.g. tkperl) into if
 INSTALLDIRS=perl.

INSTALLDIRS

Determines which of the sets of installation directories to choose:
 perl, site or vendor. Defaults to
site.

INSTALLMAN1DIR

INSTALLMAN3DIR

These directories get the man pages at 'make install' time if
 INSTALLDIRS=perl. Defaults to
$Config{installman*dir}.

If set to 'none', no man pages will be installed.

INSTALLPRIVLIB

Used by 'make install', which copies files from INST_LIB to this
 directory if INSTALLDIRS is set to
perl.

Defaults to $Config{installprivlib}.

INSTALLSCRIPT

Used by 'make install' which copies files from INST_SCRIPT to this
 directory.

INSTALLSITEARCH

Used by 'make install', which copies files from INST_ARCHLIB to this
 directory if INSTALLDIRS is
set to site (default).

INSTALLSITEBIN

Used by 'make install', which copies files from INST_BIN to this
 directory if INSTALLDIRS is set to
site (default).

INSTALLSITELIB

Used by 'make install', which copies files from INST_LIB to this
 directory if INSTALLDIRS is set to
site (default).

INSTALLSITEMAN1DIR

INSTALLSITEMAN3DIR

These directories get the man pages at 'make install' time if
 INSTALLDIRS=site (default). Defaults
to $(SITEPREFIX)/man/man$(MAN*EXT).

If set to 'none', no man pages will be installed.

INSTALLVENDORARCH

Used by 'make install', which copies files from INST_ARCHLIB to this
 directory if INSTALLDIRS is
set to vendor.

INSTALLVENDORBIN

Used by 'make install', which copies files from INST_BIN to this
 directory if INSTALLDIRS is set to

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 9http://perldoc.perl.org

vendor.

INSTALLVENDORLIB

Used by 'make install', which copies files from INST_LIB to this
 directory if INSTALLDIRS is set to
vendor.

INSTALLVENDORMAN1DIR

INSTALLVENDORMAN3DIR

These directories get the man pages at 'make install' time if
 INSTALLDIRS=vendor. Defaults to
$(VENDORPREFIX)/man/man$(MAN*EXT).

If set to 'none', no man pages will be installed.

INST_ARCHLIB

Same as INST_LIB for architecture dependent files.

INST_BIN

Directory to put real binary files during 'make'. These will be copied
 to INSTALLBIN during 'make
install'

INST_LIB

Directory where we put library files of this extension while building
 it.

INST_MAN1DIR

Directory to hold the man pages at 'make' time

INST_MAN3DIR

Directory to hold the man pages at 'make' time

INST_SCRIPT

Directory, where executable files should be installed during
 'make'. Defaults to "./blib/script", just
to have a dummy location during
 testing. make install will copy the files in INST_SCRIPT to

INSTALLSCRIPT.

LD

Program to be used to link libraries for dynamic loading.

Defaults to $Config{ld}.

LDDLFLAGS

Any special flags that might need to be passed to ld to create a
 shared library suitable for dynamic
loading. It is up to the makefile
 to use it. (See "lddlflags" in Config)

Defaults to $Config{lddlflags}.

LDFROM

Defaults to "$(OBJECT)" and is used in the ld command to specify
 what files to link/load from
(also see dynamic_lib below for how to
 specify ld flags)

LIB

LIB should only be set at perl Makefile.PL time but is allowed as a
 MakeMaker argument. It
has the effect of setting both INSTALLPRIVLIB
 and INSTALLSITELIB to that value regardless any
explicit setting of
 those arguments (or of PREFIX). INSTALLARCHLIB and INSTALLSITEARCH

are set to the corresponding architecture subdirectory.

LIBPERL_A

The filename of the perllibrary that will be used together with this
 extension. Defaults to libperl.a.

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 10http://perldoc.perl.org

LIBS

An anonymous array of alternative library
 specifications to be searched for (in order) until
 at least
one library is found. E.g.

 'LIBS' => ["-lgdbm", "-ldbm -lfoo", "-L/path -ldbm.nfs"]

Mind, that any element of the array
 contains a complete set of arguments for the ld
 command. So
do not specify

 'LIBS' => ["-ltcl", "-ltk", "-lX11"]

See ODBM_File/Makefile.PL for an example, where an array is needed. If
 you specify a scalar as
in

 'LIBS' => "-ltcl -ltk -lX11"

MakeMaker will turn it into an array with one element.

LINKTYPE

'static' or 'dynamic' (default unless usedl=undef in
 config.sh). Should only be used to force static
linking (also see
 linkext below).

MAKEAPERL

Boolean which tells MakeMaker, that it should include the rules to
 make a perl. This is handled
automatically as a switch by
 MakeMaker. The user normally does not need it.

MAKEFILE_OLD

When 'make clean' or similar is run, the $(FIRST_MAKEFILE) will be
 backed up at this location.

Defaults to $(FIRST_MAKEFILE).old or $(FIRST_MAKEFILE)_old on VMS.

MAN1PODS

Hashref of pod-containing files. MakeMaker will default this to all
 EXE_FILES files that include
POD directives. The files listed
 here will be converted to man pages and installed as was
requested
 at Configure time.

MAN3PODS

Hashref that assigns to *.pm and *.pod files the files into which the
 manpages are to be written.
MakeMaker parses all *.pod and *.pm files
 for POD directives. Files that contain POD will be the
default keys of
 the MAN3PODS hashref. These will then be converted to man pages during make
and will be installed during make install.

MAP_TARGET

If it is intended, that a new perl binary be produced, this variable
 may hold a name for that binary.
Defaults to perl

MYEXTLIB

If the extension links to a library that it builds set this to the
 name of the library (see SDBM_File)

NAME

Perl module name for this extension (DBD::Oracle). This will default
 to the directory name but
should be explicitly defined in the
 Makefile.PL.

NEEDS_LINKING

MakeMaker will figure out if an extension contains linkable code
 anywhere down the directory
tree, and will set this variable
 accordingly, but you can speed it up a very little bit if you define
 this
boolean variable yourself.

NOECHO

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 11http://perldoc.perl.org

Command so make does not print the literal commands its running.

By setting it to an empty string you can generate a Makefile that
 prints all commands. Mainly used
in debugging MakeMaker itself.

Defaults to @.

NORECURS

Boolean. Attribute to inhibit descending into subdirectories.

NO_META

When true, suppresses the generation and addition to the MANIFEST of
 the META.yml module
meta-data file during 'make distdir'.

Defaults to false.

NO_VC

In general, any generated Makefile checks for the current version of
 MakeMaker and the version
the Makefile was built under. If NO_VC is
 set, the version check is neglected. Do not write this into
your
 Makefile.PL, use it interactively instead.

OBJECT

List of object files, defaults to '$(BASEEXT)$(OBJ_EXT)', but can be a long
 string containing all
object files, e.g. "tkpBind.o
 tkpButton.o tkpCanvas.o"

(Where BASEEXT is the last component of NAME, and OBJ_EXT is $Config{obj_ext}.)

OPTIMIZE

Defaults to -O. Set it to -g to turn debugging on. The flag is
 passed to subdirectory makes.

PERL

Perl binary for tasks that can be done by miniperl

PERL_CORE

Set only when MakeMaker is building the extensions of the Perl core
 distribution.

PERLMAINCC

The call to the program that is able to compile perlmain.c. Defaults
 to $(CC).

PERL_ARCHLIB

Same as for PERL_LIB, but for architecture dependent files.

Used only when MakeMaker is building the extensions of the Perl core
 distribution (because
normally $(PERL_ARCHLIB) is automatically in @INC,
 and adding it would get in the way of
PERL5LIB).

PERL_LIB

Directory containing the Perl library to use.

Used only when MakeMaker is building the extensions of the Perl core
 distribution (because
normally $(PERL_LIB) is automatically in @INC,
 and adding it would get in the way of PERL5LIB).

PERL_MALLOC_OK

defaults to 0. Should be set to TRUE if the extension can work with
 the memory allocation
routines substituted by the Perl malloc() subsystem.
 This should be applicable to most extensions
with exceptions of those

with bugs in memory allocations which are caught by Perl's malloc();

which interact with the memory allocator in other ways than via
 malloc(), realloc(), free(),
calloc(), sbrk() and brk();

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 12http://perldoc.perl.org

which rely on special alignment which is not provided by Perl's malloc().

NOTE. Negligence to set this flag in any one of loaded extension
 nullifies many advantages of
Perl's malloc(), such as better usage of
 system resources, error detection, memory usage
reporting, catchable failure
 of memory allocations, etc.

PERLPREFIX

Directory under which core modules are to be installed.

Defaults to $Config{installprefixexp} falling back to
 $Config{installprefix}, $Config{prefixexp} or
$Config{prefix} should
 $Config{installprefixexp} not exist.

Overridden by PREFIX.

PERLRUN

Use this instead of $(PERL) when you wish to run perl. It will set up
 extra necessary flags for you.

PERLRUNINST

Use this instead of $(PERL) when you wish to run perl to work with
 modules. It will add things like
-I$(INST_ARCH) and other necessary
 flags so perl can see the modules you're about to install.

PERL_SRC

Directory containing the Perl source code (use of this should be
 avoided, it may be undefined)

PERM_RW

Desired permission for read/writable files. Defaults to 644.
 See also "perm_rw" in MM_Unix.

PERM_RWX

Desired permission for executable files. Defaults to 755.
 See also "perm_rwx" in MM_Unix.

PL_FILES

MakeMaker can run programs to generate files for you at build time.
 By default any file named
*.PL (except Makefile.PL and Build.PL) in
 the top level directory will be assumed to be a Perl
program and run
 passing its own basename in as an argument. For example...

 perl foo.PL foo

This behavior can be overridden by supplying your own set of files to
 search. PL_FILES accepts a
hash ref, the key being the file to run
 and the value is passed in as the first argument when the PL
file is run.

 PL_FILES => {'bin/foobar.PL' => 'bin/foobar'}

Would run bin/foobar.PL like this:

 perl bin/foobar.PL bin/foobar

If multiple files from one program are desired an array ref can be used.

 PL_FILES => {'bin/foobar.PL' => [qw(bin/foobar1 bin/foobar2)]}

In this case the program will be run multiple times using each target file.

 perl bin/foobar.PL bin/foobar1
 perl bin/foobar.PL bin/foobar2

PL files are normally run after pm_to_blib and include INST_LIB and
 INST_ARCH in its @INC so
the just built modules can be
 accessed... unless the PL file is making a module (or anything else
in
 PM) in which case it is run before pm_to_blib and does not include
 INST_LIB and INST_ARCH
in its @INC. This apparently odd behavior
 is there for backwards compatibility (and its somewhat
DWIM).

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 13http://perldoc.perl.org

PM

Hashref of .pm files and *.pl files to be installed. e.g.

 {'name_of_file.pm' => '$(INST_LIBDIR)/install_as.pm'}

By default this will include *.pm and *.pl and the files found in
 the PMLIBDIRS directories. Defining
PM in the
 Makefile.PL will override PMLIBDIRS.

PMLIBDIRS

Ref to array of subdirectories containing library files. Defaults to
 ['lib', $(BASEEXT)]. The
directories will be scanned and any files
 they contain will be installed in the corresponding location
in the
 library. A libscan() method can be used to alter the behaviour.
 Defining PM in the
Makefile.PL will override PMLIBDIRS.

(Where BASEEXT is the last component of NAME.)

PM_FILTER

A filter program, in the traditional Unix sense (input from stdin, output
 to stdout) that is passed on
each .pm file during the build (in the
 pm_to_blib() phase). It is empty by default, meaning no
filtering is done.

Great care is necessary when defining the command if quoting needs to be
 done. For instance,
you would need to say:

 {'PM_FILTER' => 'grep -v \\"^\\#\\"'}

to remove all the leading coments on the fly during the build. The
 extra \\ are necessary,
unfortunately, because this variable is interpolated
 within the context of a Perl program built on the
command line, and double
 quotes are what is used with the -e switch to build that command line.
The
 # is escaped for the Makefile, since what is going to be generated will then
 be:

 PM_FILTER = grep -v \"^\#\"

Without the \\ before the #, we'd have the start of a Makefile comment,
 and the macro would be
incorrectly defined.

POLLUTE

Release 5.005 grandfathered old global symbol names by providing preprocessor
 macros for
extension source compatibility. As of release 5.6, these
 preprocessor definitions are not available
by default. The POLLUTE flag
 specifies that the old names should still be defined:

 perl Makefile.PL POLLUTE=1

Please inform the module author if this is necessary to successfully install
 a module under 5.6 or
later.

PPM_INSTALL_EXEC

Name of the executable used to run PPM_INSTALL_SCRIPT below. (e.g. perl)

PPM_INSTALL_SCRIPT

Name of the script that gets executed by the Perl Package Manager after
 the installation of a
package.

PREFIX

This overrides all the default install locations. Man pages,
 libraries, scripts, etc... MakeMaker will
try to make an educated
 guess about where to place things under the new PREFIX based on your
Config defaults. Failing that, it will fall back to a structure
 which should be sensible for your
platform.

If you specify LIB or any INSTALL* variables they will not be effected
 by the PREFIX.

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 14http://perldoc.perl.org

PREREQ_FATAL

Bool. If this parameter is true, failing to have the required modules
 (or the right versions thereof)
will be fatal. perl Makefile.PL will die
 with the proper message.

Note: see Test::Harness for a shortcut for stopping tests early if
 you are missing dependencies.

Do not use this parameter for simple requirements, which could be resolved
 at a later time, e.g.
after an unsuccessful make test of your module.

It is extremely rare to have to use PREREQ_FATAL at all!

PREREQ_PM

Hashref: Names of modules that need to be available to run this
 extension (e.g. Fcntl for
SDBM_File) are the keys of the hash and the
 desired version is the value. If the required version
number is 0, we
 only check if any version is installed already.

PREREQ_PRINT

Bool. If this parameter is true, the prerequisites will be printed to
 stdout and MakeMaker will exit.
The output format is an evalable hash
 ref.

$PREREQ_PM = {
 'A::B' => Vers1,
 'C::D' => Vers2,
 ...
 };

PRINT_PREREQ

RedHatism for PREREQ_PRINT. The output format is different, though:

 perl(A::B)>=Vers1 perl(C::D)>=Vers2 ...

SITEPREFIX

Like PERLPREFIX, but only for the site install locations.

Defaults to $Config{siteprefixexp}. Perls prior to 5.6.0 didn't have
 an explicit siteprefix in the
Config. In those cases
 $Config{installprefix} will be used.

Overridable by PREFIX

SIGN

When true, perform the generation and addition to the MANIFEST of the
 SIGNATURE file in the
distdir during 'make distdir', via 'cpansign
 -s'.

Note that you need to install the Module::Signature module to
 perform this operation.

Defaults to false.

SKIP

Arrayref. E.g. [qw(name1 name2)] skip (do not write) sections of the
 Makefile. Caution! Do not use
the SKIP attribute for the negligible
 speedup. It may seriously damage the resulting Makefile. Only
use it
 if you really need it.

TYPEMAPS

Ref to array of typemap file names. Use this when the typemaps are
 in some directory other than
the current directory or when they are
 not named typemap. The last typemap in the list takes

precedence. A typemap in the current directory has highest
 precedence, even if it isn't listed in
TYPEMAPS. The default system
 typemap has lowest precedence.

VENDORPREFIX

Like PERLPREFIX, but only for the vendor install locations.

Defaults to $Config{vendorprefixexp}.

Overridable by PREFIX

VERBINST

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 15http://perldoc.perl.org

If true, make install will be verbose

VERSION

Your version number for distributing the package. This defaults to
 0.1.

VERSION_FROM

Instead of specifying the VERSION in the Makefile.PL you can let
 MakeMaker parse a file to
determine the version number. The parsing
 routine requires that the file named by
VERSION_FROM contains one
 single line to compute the version number. The first line in the file

that contains the regular expression

 /([\$*])(([\w\:\']*)\bVERSION)\b.*\=/

will be evaluated with eval() and the value of the named variable after the eval() will be assigned
to the VERSION attribute of the
 MakeMaker object. The following lines will be parsed o.k.:

 $VERSION = '1.00';
 *VERSION = \'1.01';
 $VERSION = sprintf "%d.%03d", q$Revision: 4535 $ =~ /(\d+)/g;
 $FOO::VERSION = '1.10';
 *FOO::VERSION = \'1.11';
 our $VERSION = 1.2.3; # new for perl5.6.0

but these will fail:

 my $VERSION = '1.01';
 local $VERSION = '1.02';
 local $FOO::VERSION = '1.30';

(Putting my or local on the preceding line will work o.k.)

The file named in VERSION_FROM is not added as a dependency to
 Makefile. This is not really
correct, but it would be a major pain
 during development to have to rewrite the Makefile for any
smallish
 change in that file. If you want to make sure that the Makefile
 contains the correct
VERSION macro after any change of the file, you
 would have to do something like

 depend => { Makefile => '$(VERSION_FROM)' }

See attribute depend below.

VERSION_SYM

A sanitized VERSION with . replaced by _. For places where . has
 special meaning (some
filesystems, RCS labels, etc...)

XS

Hashref of .xs files. MakeMaker will default this. e.g.

 {'name_of_file.xs' => 'name_of_file.c'}

The .c files will automatically be included in the list of files
 deleted by a make clean.

XSOPT

String of options to pass to xsubpp. This might include -C++ or -extern. Do not include
typemaps here; the TYPEMAP parameter exists for
 that purpose.

XSPROTOARG

May be set to an empty string, which is identical to -prototypes, or -noprototypes. See the
xsubpp documentation for details. MakeMaker
 defaults to the empty string.

XS_VERSION

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 16http://perldoc.perl.org

Your version number for the .xs file of this package. This defaults
 to the value of the VERSION
attribute.

Additional lowercase attributes
can be used to pass parameters to the methods which implement that
 part of the Makefile.
Parameters are specified as a hash ref but are
 passed to the method as a hash.

clean

 {FILES => "*.xyz foo"}

depend

 {ANY_TARGET => ANY_DEPENDECY, ...}

(ANY_TARGET must not be given a double-colon rule by MakeMaker.)

dist

 {TARFLAGS => 'cvfF', COMPRESS => 'gzip', SUFFIX => '.gz',
 SHAR => 'shar -m', DIST_CP => 'ln', ZIP => '/bin/zip',
 ZIPFLAGS => '-rl', DIST_DEFAULT => 'private tardist' }

If you specify COMPRESS, then SUFFIX should also be altered, as it is
 needed to tell make the
target file of the compression. Setting
 DIST_CP to ln can be useful, if you need to preserve the
timestamps on
 your files. DIST_CP can take the values 'cp', which copies the file,
 'ln', which links
the file, and 'best' which copies symbolic links and
 links the rest. Default is 'best'.

dynamic_lib

 {ARMAYBE => 'ar', OTHERLDFLAGS => '...', INST_DYNAMIC_DEP => '...'}

linkext

 {LINKTYPE => 'static', 'dynamic' or ''}

NB: Extensions that have nothing but *.pm files had to say

 {LINKTYPE => ''}

with Pre-5.0 MakeMakers. Since version 5.00 of MakeMaker such a line
 can be deleted safely.
MakeMaker recognizes when there's nothing to
 be linked.

macro

 {ANY_MACRO => ANY_VALUE, ...}

postamble

Anything put here will be passed to MY::postamble() if you have one.

realclean

 {FILES => '$(INST_ARCHAUTODIR)/*.xyz'}

test

 {TESTS => 't/*.t'}

tool_autosplit

 {MAXLEN => 8}

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 17http://perldoc.perl.org

Overriding MakeMaker Methods
If you cannot achieve the desired Makefile behaviour by specifying
 attributes you may define private
subroutines in the Makefile.PL.
 Each subroutine returns the text it wishes to have written to
 the
Makefile. To override a section of the Makefile you can
 either say:

 sub MY::c_o { "new literal text" }

or you can edit the default by saying something like:

 package MY; # so that "SUPER" works right
 sub c_o {
 my $inherited = shift->SUPER::c_o(@_);
 $inherited =~ s/old text/new text/;
 $inherited;
 }

If you are running experiments with embedding perl as a library into
 other applications, you might find
MakeMaker is not sufficient. You'd
 better have a look at ExtUtils::Embed which is a collection of
utilities
 for embedding.

If you still need a different solution, try to develop another
 subroutine that fits your needs and submit
the diffs to makemaker@perl.org

For a complete description of all MakeMaker methods see ExtUtils::MM_Unix.

Here is a simple example of how to add a new target to the generated
 Makefile:

 sub MY::postamble {
 return <<'MAKE_FRAG';
 $(MYEXTLIB): sdbm/Makefile
 cd sdbm && $(MAKE) all

 MAKE_FRAG
 }

The End Of Cargo Cult Programming
WriteMakefile() now does some basic sanity checks on its parameters to
 protect against typos and
malformatted values. This means some things
 which happened to work in the past will now throw
warnings and
 possibly produce internal errors.

Some of the most common mistakes:

MAN3PODS => ' '

This is commonly used to supress the creation of man pages. MAN3PODS
 takes a hash ref not a
string, but the above worked by accident in old
 versions of MakeMaker.

The correct code is MAN3PODS => { }.

Hintsfile support
MakeMaker.pm uses the architecture specific information from
 Config.pm. In addition it evaluates
architecture specific hints files
 in a hints/ directory. The hints files are expected to be named
 like
their counterparts in PERL_SRC/hints, but with an .pl file
 name extension (eg. next_3_2.pl).
They are simply evaled by
 MakeMaker within the WriteMakefile() subroutine, and can be used to

execute commands as well as to include special variables. The rules
 which hintsfile is chosen are the
same as in Configure.

The hintsfile is eval()ed immediately after the arguments given to
 WriteMakefile are stuffed into a

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 18http://perldoc.perl.org

hash reference $self but before this
 reference becomes blessed. So if you want to do the equivalent
to
 override or create an attribute you would say something like

 $self->{LIBS} = ['-ldbm -lucb -lc'];

Distribution Support
For authors of extensions MakeMaker provides several Makefile
 targets. Most of the support comes
from the ExtUtils::Manifest module,
 where additional documentation can be found.

make distcheck

reports which files are below the build directory but not in the
 MANIFEST file and vice versa.
(See ExtUtils::Manifest::fullcheck() for
 details)

make skipcheck

reports which files are skipped due to the entries in the MANIFEST.SKIP file (See
ExtUtils::Manifest::skipcheck() for
 details)

make distclean

does a realclean first and then the distcheck. Note that this is not
 needed to build a new
distribution as long as you are sure that the
 MANIFEST file is ok.

make manifest

rewrites the MANIFEST file, adding all remaining files found (See

ExtUtils::Manifest::mkmanifest() for details)

make distdir

Copies all the files that are in the MANIFEST file to a newly created
 directory with the name
$(DISTNAME)-$(VERSION). If that directory
 exists, it will be removed first.

Additionally, it will create a META.yml module meta-data file in the
 distdir and add this to the
distdir's MANFIEST. You can shut this
 behavior off with the NO_META flag.

make disttest

Makes a distdir first, and runs a perl Makefile.PL, a make, and
 a make test in that
directory.

make tardist

First does a distdir. Then a command $(PREOP) which defaults to a null
 command, followed
by $(TOUNIX), which defaults to a null command under
 UNIX, and will convert files in
distribution directory to UNIX format
 otherwise. Next it runs tar on that directory into a tarfile
and
 deletes the directory. Finishes with a command $(POSTOP) which
 defaults to a null
command.

make dist

Defaults to $(DIST_DEFAULT) which in turn defaults to tardist.

make uutardist

Runs a tardist first and uuencodes the tarfile.

make shdist

First does a distdir. Then a command $(PREOP) which defaults to a null
 command. Next it
runs shar on that directory into a sharfile and
 deletes the intermediate directory again.
Finishes with a command
 $(POSTOP) which defaults to a null command. Note: For shdist to
work
 properly a shar program that can handle directories is mandatory.

make zipdist

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 19http://perldoc.perl.org

First does a distdir. Then a command $(PREOP) which defaults to a null
 command. Runs
$(ZIP) $(ZIPFLAGS) on that directory into a
 zipfile. Then deletes that directory. Finishes
with a command
 $(POSTOP) which defaults to a null command.

make ci

Does a $(CI) and a $(RCS_LABEL) on all files in the MANIFEST file.

Customization of the dist targets can be done by specifying a hash
 reference to the dist attribute of
the WriteMakefile call. The
 following parameters are recognized:

 CI ('ci -u')
 COMPRESS ('gzip --best')
 POSTOP ('@ :')
 PREOP ('@ :')
 TO_UNIX (depends on the system)
 RCS_LABEL ('rcs -q -Nv$(VERSION_SYM):')
 SHAR ('shar')
 SUFFIX ('.gz')
 TAR ('tar')
 TARFLAGS ('cvf')
 ZIP ('zip')
 ZIPFLAGS ('-r')

An example:

 WriteMakefile('dist' => { COMPRESS=>"bzip2", SUFFIX=>".bz2" })

Module Meta-Data
Long plaguing users of MakeMaker based modules has been the problem of
 getting basic information
about the module out of the sources without running the Makefile.PL and doing a bunch of messy

heuristics on the resulting Makefile. To this end a simple module
 meta-data file has been introduced,
META.yml.

META.yml is a YAML document (see http://www.yaml.org) containing
 basic information about the
module (name, version, prerequisites...)
 in an easy to read format. The format is developed and
defined by the
 Module::Build developers (see http://module-build.sourceforge.net/META-spec.html)

MakeMaker will automatically generate a META.yml file for you and
 add it to your MANIFEST as part
of the 'distdir' target (and thus
 the 'dist' target). This is intended to seamlessly and rapidly
 populate
CPAN with module meta-data. If you wish to shut this feature
 off, set the NO_META
WriteMakefile() flag to true.

Disabling an extension
If some events detected in Makefile.PL imply that there is no way
 to create the Module, but this is a
normal state of things, then you
 can create a Makefile which does nothing, but succeeds on all the

"usual" build targets. To do so, use

 ExtUtils::MakeMaker::WriteEmptyMakefile();

instead of WriteMakefile().

This may be useful if other modules expect this module to be built
 OK, as opposed to work OK (say,
this system-dependent module builds
 in a subdirectory of some other distribution, or is listed as a

dependency in a CPAN::Bundle, but the functionality is supported by
 different means on the current
architecture).

Perl version 5.8.8 documentation - ExtUtils::MakeMaker

Page 20http://perldoc.perl.org

Other Handy Functions
prompt

 my $value = prompt($message);
 my $value = prompt($message, $default);

The prompt() function provides an easy way to request user input
 used to write a makefile. It
displays the $message as a prompt for
 input. If a $default is provided it will be used as a
default. The
 function returns the $value selected by the user.

If prompt() detects that it is not running interactively and there
 is nothing on STDIN or if the
PERL_MM_USE_DEFAULT environment variable
 is set to true, the $default will be used
without prompting. This
 prevents automated processes from blocking on user input.

If no $default is provided an empty string will be used instead.

ENVIRONMENT
PERL_MM_OPT

Command line options used by MakeMaker->new(), and thus by WriteMakefile(). The
string is split on whitespace, and the result
 is processed before any actual command line
arguments are processed.

PERL_MM_USE_DEFAULT

If set to a true value then MakeMaker's prompt function will
 always return the default without
waiting for user input.

PERL_CORE

Same as the PERL_CORE parameter. The parameter overrides this.

SEE ALSO
ExtUtils::MM_Unix, ExtUtils::Manifest ExtUtils::Install,
 ExtUtils::Embed

AUTHORS
Andy Dougherty doughera@lafayette.edu, Andreas König andreas.koenig@mind.de, Tim
Bunce timb@cpan.org. VMS
 support by Charles Bailey bailey@newman.upenn.edu. OS/2
support
 by Ilya Zakharevich ilya@math.ohio-state.edu.

Currently maintained by Michael G Schwern schwern@pobox.com

Send patches and ideas to makemaker@perl.org.

Send bug reports via http://rt.cpan.org/. Please send your
 generated Makefile along with your report.

For more up-to-date information, see http://www.makemaker.org.

LICENSE
This program is free software; you can redistribute it and/or modify it under the same terms as Perl
itself.

See http://www.perl.com/perl/misc/Artistic.html

