
Perl version 5.8.8 documentation - Net::POP3

Page 1http://perldoc.perl.org

NAME
Net::POP3 - Post Office Protocol 3 Client class (RFC1939)

SYNOPSIS
 use Net::POP3;

 # Constructors
 $pop = Net::POP3->new('pop3host');
 $pop = Net::POP3->new('pop3host', Timeout => 60);

 if ($pop->login($username, $password) > 0) {
 my $msgnums = $pop->list; # hashref of msgnum => size
 foreach my $msgnum (keys %$msgnums) {
 my $msg = $pop->get($msgnum);
 print @$msg;
 $pop->delete($msgnum);
 }
 }

 $pop->quit;

DESCRIPTION
This module implements a client interface to the POP3 protocol, enabling
 a perl5 application to talk to
POP3 servers. This documentation assumes
 that you are familiar with the POP3 protocol described in
RFC1939.

A new Net::POP3 object must be created with the new method. Once
 this has been done, all POP3
commands are accessed via method calls
 on the object.

CONSTRUCTOR
new ([HOST] [, OPTIONS] 0

This is the constructor for a new Net::POP3 object. HOST is the
 name of the remote host to
which an POP3 connection is required.

HOST is optional. If HOST is not given then it may instead be
 passed as the Host option
described below. If neither is given then
 the POP3_Hosts specified in Net::Config will be
used.

OPTIONS are passed in a hash like fashion, using key and value pairs.
 Possible options are:

Host - POP3 host to connect to. It may be a single scalar, as defined for
 the PeerAddr option
in IO::Socket::INET, or a reference to
 an array with hosts to try in turn. The host method will
return the value
 which was used to connect to the host.

ResvPort - If given then the socket for the Net::POP3 object
 will be bound to the local port
given using bind when the socket is
 created.

Timeout - Maximum time, in seconds, to wait for a response from the
 POP3 server (default:
120)

Debug - Enable debugging information

METHODS
Unless otherwise stated all methods return either a true or false
 value, with true meaning that the
operation was a success. When a method
 states that it returns a value, failure will be returned as
undef or an
 empty list.

auth (USERNAME, PASSWORD)

Perl version 5.8.8 documentation - Net::POP3

Page 2http://perldoc.perl.org

Attempt SASL authentication.

user (USER)

Send the USER command.

pass (PASS)

Send the PASS command. Returns the number of messages in the mailbox.

login ([USER [, PASS]])

Send both the USER and PASS commands. If PASS is not given the Net::POP3 uses
Net::Netrc to lookup the password using the host
 and username. If the username is not
specified then the current user name
 will be used.

Returns the number of messages in the mailbox. However if there are no
 messages on the
server the string "0E0" will be returned. This is
 will give a true value in a boolean context, but
zero in a numeric context.

If there was an error authenticating the user then undef will be returned.

apop ([USER [, PASS]])

Authenticate with the server identifying as USER with password PASS.
 Similar to login, but the
password is not sent in clear text.

To use this method you must have the Digest::MD5 or the MD5 module installed,
 otherwise
this method will return undef.

banner ()

Return the sever's connection banner

capa ()

Return a reference to a hash of the capabilties of the server. APOP
 is added as a pseudo
capability. Note that I've been unable to
 find a list of the standard capability values, and some
appear to
 be multi-word and some are not. We make an attempt at intelligently
 parsing them,
but it may not be correct.

capabilities ()

Just like capa, but only uses a cache from the last time we asked
 the server, so as to avoid
asking more than once.

top (MSGNUM [, NUMLINES])

Get the header and the first NUMLINES of the body for the message MSGNUM. Returns a
reference to an array which contains the lines of text
 read from the server.

list ([MSGNUM])

If called with an argument the list returns the size of the message
 in octets.

If called without arguments a reference to a hash is returned. The
 keys will be the MSGNUM's of
all undeleted messages and the values will
 be their size in octets.

get (MSGNUM [, FH])

Get the message MSGNUM from the remote mailbox. If FH is not given
 then get returns a
reference to an array which contains the lines of
 text read from the server. If FH is given then
the lines returned
 from the server are printed to the filehandle FH.

getfh (MSGNUM)

As per get(), but returns a tied filehandle. Reading from this
 filehandle returns the requested
message. The filehandle will return
 EOF at the end of the message and should not be reused.

last ()

Perl version 5.8.8 documentation - Net::POP3

Page 3http://perldoc.perl.org

Returns the highest MSGNUM of all the messages accessed.

popstat ()

Returns a list of two elements. These are the number of undeleted
 elements and the size of
the mbox in octets.

ping (USER)

Returns a list of two elements. These are the number of new messages
 and the total number
of messages for USER.

uidl ([MSGNUM])

Returns a unique identifier for MSGNUM if given. If MSGNUM is not
 given uidl returns a
reference to a hash where the keys are the
 message numbers and the values are the unique
identifiers.

delete (MSGNUM)

Mark message MSGNUM to be deleted from the remote mailbox. All messages
 that are marked
to be deleted will be removed from the remote mailbox
 when the server connection closed.

reset ()

Reset the status of the remote POP3 server. This includes reseting the
 status of all messages
to not be deleted.

quit ()

Quit and close the connection to the remote POP3 server. Any messages marked
 as deleted
will be deleted from the remote mailbox.

NOTES
If a Net::POP3 object goes out of scope before quit method is called
 then the reset method will
called before the connection is closed. This
 means that any messages marked to be deleted will not
be.

SEE ALSO
Net::Netrc, Net::Cmd

AUTHOR
Graham Barr <gbarr@pobox.com>

COPYRIGHT
Copyright (c) 1995-2003 Graham Barr. All rights reserved.
 This program is free software; you can
redistribute it and/or modify
 it under the same terms as Perl itself.

