
Perl version 5.8.8 documentation - Term::ANSIColor

Page 1http://perldoc.perl.org

NAME
Term::ANSIColor - Color screen output using ANSI escape sequences

SYNOPSIS
 use Term::ANSIColor;
 print color 'bold blue';
 print "This text is bold blue.\n";
 print color 'reset';
 print "This text is normal.\n";
 print colored ("Yellow on magenta.\n", 'yellow on_magenta');
 print "This text is normal.\n";
 print colored ['yellow on_magenta'], "Yellow on magenta.\n";

 use Term::ANSIColor qw(uncolor);
 print uncolor '01;31', "\n";

 use Term::ANSIColor qw(:constants);
 print BOLD, BLUE, "This text is in bold blue.\n", RESET;

 use Term::ANSIColor qw(:constants);
 $Term::ANSIColor::AUTORESET = 1;
 print BOLD BLUE "This text is in bold blue.\n";
 print "This text is normal.\n";

DESCRIPTION
This module has two interfaces, one through color() and colored() and the
 other through constants. It
also offers the utility function uncolor(),
 which has to be explicitly imported to be used (see
SYNOPSIS).

color() takes any number of strings as arguments and considers them to be
 space-separated lists of
attributes. It then forms and returns the escape
 sequence to set those attributes. It doesn't print it out,
just returns it,
 so you'll have to print it yourself if you want to (this is so that you can
 save it as a string,
pass it to something else, send it to a file handle, or
 do anything else with it that you might care to).

uncolor() performs the opposite translation, turning escape sequences
 into a list of strings.

The recognized attributes (all of which should be fairly intuitive) are
 clear, reset, dark, bold, underline,
underscore, blink, reverse, concealed,
 black, red, green, yellow, blue, magenta, on_black, on_red,
on_green,
 on_yellow, on_blue, on_magenta, on_cyan, and on_white. Case is not
 significant.
Underline and underscore are equivalent, as are clear and
 reset, so use whichever is the most
intuitive to you. The color alone sets
 the foreground color, and on_color sets the background color.

Note that not all attributes are supported by all terminal types, and some
 terminals may not support
any of these sequences. Dark, blink, and
 concealed in particular are frequently not implemented.

Attributes, once set, last until they are unset (by sending the attribute
 "reset"). Be careful to do this, or
otherwise your attribute will last
 after your script is done running, and people get very annoyed at
having
 their prompt and typing changed to weird colors.

As an aid to help with this, colored() takes a scalar as the first argument
 and any number of attribute
strings as the second argument and returns the
 scalar wrapped in escape codes so that the attributes
will be set as
 requested before the string and reset to normal after the string.
 Alternately, you can
pass a reference to an array as the first argument, and
 then the contents of that array will be taken as
attributes and color codes
 and the remainder of the arguments as text to colorize.

Normally, colored() just puts attribute codes at the beginning and end of
 the string, but if you set

Perl version 5.8.8 documentation - Term::ANSIColor

Page 2http://perldoc.perl.org

$Term::ANSIColor::EACHLINE to some string, that
 string will be considered the line delimiter and the
attribute will be set
 at the beginning of each line of the passed string and reset at the end of
 each line.
This is often desirable if the output is being sent to a program
 like a pager that can be confused by
attributes that span lines. Normally
 you'll want to set $Term::ANSIColor::EACHLINE to "\n" to use
this
 feature.

Alternately, if you import :constants, you can use the constants CLEAR,
 RESET, BOLD, DARK,
UNDERLINE, UNDERSCORE, BLINK, REVERSE, CONCEALED, BLACK,
 RED, GREEN, YELLOW,
BLUE, MAGENTA, CYAN, WHITE, ON_BLACK, ON_RED, ON_GREEN,
 ON_YELLOW, ON_BLUE,
ON_MAGENTA, ON_CYAN, and ON_WHITE directly. These are
 the same as color('attribute') and
can be used if you prefer typing:

 print BOLD BLUE ON_WHITE "Text\n", RESET;

to

 print colored ("Text\n", 'bold blue on_white');

When using the constants, if you don't want to have to remember to add the , RESET at the end of
each print line, you can set
 $Term::ANSIColor::AUTORESET to a true value. Then, the display mode
will
 automatically be reset if there is no comma after the constant. In other
 words, with that variable
set:

 print BOLD BLUE "Text\n";

will reset the display mode afterwards, whereas:

 print BOLD, BLUE, "Text\n";

will not.

The subroutine interface has the advantage over the constants interface in
 that only two subroutines
are exported into your namespace, versus
 twenty-two in the constants interface. On the flip side, the
constants
 interface has the advantage of better compile time error checking, since
 misspelled names
of colors or attributes in calls to color() and colored()
 won't be caught until runtime whereas misspelled
names of constants will be
 caught at compile time. So, polute your namespace with almost two dozen
subroutines that you may not even use that often, or risk a silly bug by
 mistyping an attribute. Your
choice, TMTOWTDI after all.

DIAGNOSTICS
Bad escape sequence %s

(F) You passed an invalid ANSI escape sequence to uncolor().

Bareword "%s" not allowed while "strict subs" in use

(F) You probably mistyped a constant color name such as:

 $Foobar = FOOBAR . "This line should be blue\n";

or:

 @Foobar = FOOBAR, "This line should be blue\n";

This will only show up under use strict (another good reason to run under
 use strict).

Invalid attribute name %s

(F) You passed an invalid attribute name to either color() or colored().

Name "%s" used only once: possible typo

Perl version 5.8.8 documentation - Term::ANSIColor

Page 3http://perldoc.perl.org

(W) You probably mistyped a constant color name such as:

 print FOOBAR "This text is color FOOBAR\n";

It's probably better to always use commas after constant names in order to
 force the next
error.

No comma allowed after filehandle

(F) You probably mistyped a constant color name such as:

 print FOOBAR, "This text is color FOOBAR\n";

Generating this fatal compile error is one of the main advantages of using
 the constants
interface, since you'll immediately know if you mistype a
 color name.

No name for escape sequence %s

(F) The ANSI escape sequence passed to uncolor() contains escapes which
 aren't recognized
and can't be translated to names.

ENVIRONMENT
ANSI_COLORS_DISABLED

If this environment variable is set, all of the functions defined by this
 module (color(), colored(),
and all of the constants not previously used in
 the program) will not output any escape
sequences and instead will just
 return the empty string or pass through the original text as
appropriate.
 This is intended to support easy use of scripts using this module on
 platforms that
don't support ANSI escape sequences.

For it to have its proper effect, this environment variable must be set
 before any color
constants are used in the program.

RESTRICTIONS
It would be nice if one could leave off the commas around the constants
 entirely and just say:

 print BOLD BLUE ON_WHITE "Text\n" RESET;

but the syntax of Perl doesn't allow this. You need a comma after the
 string. (Of course, you may
consider it a bug that commas between all the
 constants aren't required, in which case you may feel
free to insert commas
 unless you're using $Term::ANSIColor::AUTORESET.)

For easier debuging, you may prefer to always use the commas when not
 setting
$Term::ANSIColor::AUTORESET so that you'll get a fatal compile error
 rather than a warning.

NOTES
The codes generated by this module are standard terminal control codes,
 complying with ECMA-48
and ISO 6429 (generally referred to as "ANSI color"
 for the color codes). The non-color control codes
(bold, dark, italic,
 underline, and reverse) are part of the earlier ANSI X3.64 standard for
 control
sequences for video terminals and peripherals.

Note that not all displays are ISO 6429-compliant, or even X3.64-compliant
 (or are even attempting to
be so). This module will not work as expected on
 displays that do not honor these escape sequences,
such as cmd.exe, 4nt.exe,
 and command.com under either Windows NT or Windows 2000. They may
just be
 ignored, or they may display as an ESC character followed by some apparent
 garbage.

Jean Delvare provided the following table of different common terminal
 emulators and their support
for the various attributes and others have helped
 me flesh it out:

 clear bold dark under blink reverse conceal
 --
 xterm yes yes no yes bold yes yes

Perl version 5.8.8 documentation - Term::ANSIColor

Page 4http://perldoc.perl.org

 linux yes yes yes bold yes yes no
 rxvt yes yes no yes bold/black yes no
 dtterm yes yes yes yes reverse yes yes
 teraterm yes reverse no yes rev/red yes no
 aixterm kinda normal no yes no yes yes
 PuTTY yes color no yes no yes no
 Windows yes no no no no yes no
 Cygwin SSH yes yes no color color color yes
 Mac Terminal yes yes no yes yes yes yes

Windows is Windows telnet, Cygwin SSH is the OpenSSH implementation under
 Cygwin on Windows
NT, and Mac Terminal is the Terminal application in Mac OS
 X. Where the entry is other than yes or
no, that emulator displays the
 given attribute as something else instead. Note that on an aixterm,
clear
 doesn't reset colors; you have to explicitly set the colors back to what you
 want. More entries in
this table are welcome.

Note that codes 3 (italic), 6 (rapid blink), and 9 (strikethrough) are
 specified in ANSI X3.64 and
ECMA-048 but are not commonly supported by most
 displays and emulators and therefore aren't
supported by this module at the
 present time. ECMA-048 also specifies a large number of other
attributes,
 including a sequence of attributes for font changes, Fraktur characters,
 double-underlining,
framing, circling, and overlining. As none of these
 attributes are widely supported or useful, they also
aren't currently
 supported by this module.

SEE ALSO
ECMA-048 is available on-line (at least at the time of this writing) at
http://www.ecma-international.org/publications/standards/ECMA-048.HTM.

ISO 6429 is available from ISO for a charge; the author of this module does
 not own a copy of it.
Since the source material for ISO 6429 was ECMA-048
 and the latter is available for free, there
seems little reason to obtain
 the ISO standard.

The current version of this module is always available from its web site at
http://www.eyrie.org/~eagle/software/ansicolor/. It is also part of the
 Perl core distribution as of 5.6.0.

AUTHORS
Original idea (using constants) by Zenin, reimplemented using subs by Russ
 Allbery
<rra@stanford.edu>, and then combined with the original idea by Russ
 with input from Zenin. Russ
Allbery now maintains this module.

COPYRIGHT AND LICENSE
Copyright 1996, 1997, 1998, 2000, 2001, 2002 Russ Allbery <rra@stanford.edu>
 and Zenin. This
program is free software; you may redistribute it and/or
 modify it under the same terms as Perl itself.

